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Abstract

Domain-specific named-entity recognition (NER) in parliamentary proceedings is
obstructed by scarce annotated data. This thesis explores two complementary strate-
gies to mitigate these challenges. First, we quantify how few-shot prompting with a
large language model lets it generate high-quality synthetic sentences that read like
real plenary speech. Automatic metrics (SBERT, BLEU, ROUGE) and qualitative
analyses (t-SNE, readability, sentence-length profiles) show a steep improvement
from 0- to 1-shot and continued, though diminishing, gains up to 25-shot. A 50-
shot prompt attains the strongest similarity scores but also produces more formal,
domain-specific phrasing, reflected in higher perplexity.

Second, we introduce WorgBERT, a Dutch Transformer fine-tuned for fine-grained
organisational NER. On a balanced synthetic test set the model reaches 0.96 accuracy
and the macro-F1 = 0.73, confirming sufficient capacity to learn all sub-types. When
ported to an gold standard corpus, macro-F1 drops to 0.24. The standard RobBERT
attains a macro-F1 score twice as high as WorgBERT, underscoring how hard it is
to detect organisations in parliamentary transcripts.

Together, these results demonstrate that few-shot generation can generate authentic
looking parliamentary language and that the WorgBERT solution is a viable fine-
grained NER model provided additional annotations are collected. The work offers
practical guidelines for scaling domain-specific NER: leverage moderate few-shot
prompts to enrich training data and prioritise targeted annotation of the rarest labels
to unlock the full potential of fine-grained models.
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1 Introduction

Since 2022 the Dutch government has fully embraced the Wet open overheid (Woo,
or Open Government Act), retiring the older Wet openbaarheid van bestuur (Wob)
(Overheid, 2025). The ambition goes well beyond just a legal update, by proactively
disclosing governmental information, the government aims to strengthen democratic
oversight and invite citizens, journalists, and researchers to engage with the state’s
day-to-day decision-making.

Yet that transparency comes with a twist. Every ministry, municipality, and executive
agency now uploads a combined total of more than 500.000 documents per year. So
many in fact, that the yearly page count is growing exponentially. An example of this
exponential growth of pages publications, are the minutes by the Staten-Generaal.
Figure 1 illustrates the exponential growth of parliamentary minutes published since
1815. Transparency, is no longer just about making information public. It is about
helping society navigate an ever-growing sea of PDFs to discover what truly matters.

Figure 1: Minute Documents vs. Papers Uploaded per Year Since
Start of United Kingdom of the Netherlands

The OpenGov Lab, part of the Innovation Center for Artificial Intelligence (ICAI),
is a collaboration between the University of Amsterdam (UvA) and the National
Organization for Information Management (RvIHH)1. The lab’s mission follows
the philosophy: "to improve and support interpretation, retrieval, and use of open
government data, to increase government transparency, public trust, and ultimately
democratic participation." (“ICAI”, n.d.).

The dynamic nature of the political landscape introduces significant variety within
these documents, particularly evident in the Minutes of the Staten-Generaal. These
are transcriptions of Dutch parliamentary meeting. It captures the dialogue involving
the Chair of the Staten Generaal and other speakers from the chamber. Crucially,
each spoken contribution is attributed to the specific speaker by name and their
political party affiliation.

As official transcribed records of meetings, the inherent structure often complicates
research. This difficulty is compounded by the specific terminology and jargon

1https://www.icai.ai/labs/icai-opengov-lab

1

https://www.icai.ai/labs/icai-opengov-lab


employed by various politicians and speakers. For an example illustrating the typical
language and structure found in these records, see Figure 2. Furthermore, the
Minutes of the Staten-Generaal frequently contain references to a diverse array
of organizations, including political parties, businesses, NGOs, and governmental
entities. These are not always mentioned by name but most of the time mentioned
by their abbreviation.

Figure 2: Example of How Original Minutes Look Like

To enhance the ability to perform research on these documents Named Entity Recog-
nition (NER), a Natural Language Processing (NLP) task, can be a solution. This
NLP task focuses on identifying and categorizing specific pieces of information within
texts. The goal is to locate references to predefined categories, and assign them the
correct label. It is considered a fundamental step in information extraction (Vajjala
& Balasubramaniam, 2022). This makes NER really useful for making the data more
insightful (Jehangir et al., 2023).

A significant weakness of many state-of-the-art Named Entity Recognition (NER)
models, is their heavy reliance on large amounts of high-quality labeled training data.
Creating such datasets is often time-consuming and expensive, presenting a major
bottleneck, especially for specialized domains or less-resourced languages (MacLean
& Cavallucci, 2024). When only limited labeled data is available a "low-resource" or
"few-sample" scenario occurs (Jehangir et al., 2023), this makes processes like the
training for models like BERT unstable. This instability in a few sample settings
makes it difficult to reliably apply powerful NER techniques when labeled data is
scarce (Zhang et al., 2021).

The recent wave of generative AI such as ChatGPT, Gemini and Claude, presents new
possibilities to combat the low-resource data in NER (Brown et al., 2020; Santoso
et al., 2024). These models are often built on large amounts of data and possess
the capability to perform NER tasks (Kuzman & Ljubešić, 2025). Often, however,
deploying these techniques directly can be very cost-inefficient and computationally
demanding, particularly in settings with limited resources (Santoso et al., 2024).
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As a model such as GPT-3 (175B parameter) is roughly 1600 times larger than
BERT-Base (110 M parameters).

Therefore another approach is proposed in this thesis: the use of LLMs for reliable
data creation with In-Context Learning (ICL) (Dong et al., 2024). In Brown et al.
(2020), ICL is described as the capability of large language models to learn to perform
a new task simply by receiving a few examples or demonstrations within the input
prompt itself. Unlike traditional training the model adapts its behavior for the
specific task based on the context provided during inference.

A significant hurdle for analyzing Dutch governmental documents is the absence of
a fine-tuned BERT model for this domain. While fine-tuning could create such a
model, it requires substantial accurately labeled data. Given the vast volume of
governmental texts, manual annotation, even for a small fraction, is often impractical
due to resource intensity (MacLean & Cavallucci, 2024).

Further complicating the task are the specific needs of the governmental context.
Standard NER categories (person, location, organization) are insufficient; domain-
specific labels like governmental entity, political party, NGO, etc., are required (see
Section 2). Additionally, the dynamic nature of governmental language, influenced
by political events and changing discourse, adds another layer of complexity.

Scientifically, this research investigates the potential of Large Language Models
(LLMs) to generate high-quality, domain-specific synthetic data to minutes of the
"Staten-Generaal". A core part of the contribution involves evaluating the effective-
ness of this LLM-generated data, specifically its utility in fine-tuning downstream
models like BERT, thereby offering insights into data augmentation and model
adaptation methodologies (Bogdanov et al., 2024; Zhang et al., 2021).

Addressing these technical and scientific challenges is crucial not only for advancing
NLP research but also for achieving societal goals. By making complex governmental
information more accessible and interpretable through improved NER, this work aims
to enhance government transparency and citizen engagement, aligning with the objec-
tives of initiatives like the Open Government Act (Attard et al., 2015; Overheid, 2025).

Having established these challenges and the relevance of addressing them, the central
research questions guiding this study are:

RQ1: How well do Large Language Model perform in generating a representa-
tive synthetic dataset of NER compatible labeled Dutch governmental
texts?

RQ2: How does the performance of a Dutch BERT model fine-tuned on syn-
thetically generated dataset compare to that of a pre-trained (non-fine-
tuned) Dutch BERT model?
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2 Literature Review

2.1 Introduction
This chapter provides a comprehensive review of the literature relevant to leveraging
Large Language Models (LLMs) for enhancing Named Entity Recognition (NER)
in the specialized, low-resource context of Dutch governmental documents. It
begins by establishing the fundamentals of NER, including its definition, common
approaches, and evaluation metrics (Section 2.2). Subsequently, the review delves
into the significant challenges posed by data scarcity in training robust NER models,
particularly within unique domains like governmental text (Section 2.3). The potential
of LLMs to mitigate these challenges is then explored (Section 2.4), leading into
a discussion of pertinent learning paradigms (such as Zero-Shot, Few-Shot, and
In-Context Learning), the growing field of LLM-driven synthetic data generation,
and the contrast with traditional data-abundant methods like Many-Shot (Section
2.5). The importance of domain adaptation for applying these techniques effectively
is also addressed within Section 2.5. Furthermore, relevant prior studies employing
synthetic data for low-resource NER are analyzed to position the current research
within the field (Section 2.6). Finally, this review culminates in a synthesis of the
findings and a clear articulation of the specific research gap this thesis aims to address
(Section 2.7).

2.2 Named Entity Recognition (NER)

2.2.1 Defining NER: Task and Importance

Named Entity Recognition (NER) is a fundamental task within Natural Language
Processing (NLP) focused on automatically identifying and classifying specific pieces
of information, known as "named entities," within unstructured text (Mohit, 2014).
The primary goal of NER is to locate mentions of predefined categories – such as
the names of persons, organizations, locations, dates, monetary values, percentages,
and more – and assign them the correct category label (Vajjala & Balasubramaniam,
2022). By pinpointing these entities, NER systems transform raw text into structured
information, making it a crucial first step in many information extraction pipelines.
Its ability to structure textual data makes NER highly valuable for gaining insights
from large volumes of text, enabling applications ranging from information retrieval
and question answering to knowledge base population and content analysis (Vajjala
& Balasubramaniam, 2022).

2.2.2 NER as a Sequence Tagging Problem

Computationally, NER is frequently approached as a sequence tagging or sequence
labeling problem (Yadav & Bethard, 2018). In this paradigm, the input text is
treated as a sequence of tokens (words or subwords). The goal is then to assign a
corresponding categorical label to each token in the sequence. These labels typically
indicate whether a token is outside any entity (’O’), the beginning of a named entity
of a specific type (’B-TYPE’, e.g., ’B-PER’ for beginning-person), or inside a named
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entity (’I-TYPE’, e.g., ’I-PER’ for inside-person). More complex tagging schemes like
BIOES (Begin, Inside, Outside, End, Single) also exist. Framing NER this way allows
the application of powerful sequence modeling techniques, such as Transformer-based
architectures (BERT), to predict the most likely sequence of tags for a given sequence
of tokens.

2.2.3 History of NER Approaches and Architectures

Early approaches to NER often involved handcrafted rules and dictionary lookups
(Jehangir et al., 2023). While useful in restricted contexts, these methods struggled
with scalability, ambiguity, and novel entities. Eventually, classic machine learning
methods like the Hidden Markov Models (HMMs) and Conditional Random Fields
(CRFs) became more popular, leveraging statistical patterns from annotated data
(Yadav & Bethard, 2018).

The current state-of-the-art is dominated by deep learning. Architectures based on
Recurrent Neural Networks (RNNs), particularly Bidirectional Long Short-Term
Memory networks combined with a CRF layer (BiLSTM-CRF), can effectively cap-
ture positional relationships (Jehangir et al., 2023; Yadav & Bethard, 2018). More
recently, Transformer-based models like BERT (Bidirectional Encoder Representa-
tions from Transformers) (Wu & Dredze, 2019) have achieved superior results by
using attention mechanisms and large-scale pre-training to learn rich contextual
word representations. These models are typically fine-tuned on task-specific data for
downstream applications like NER.

For the Dutch language context, relevant to this thesis, specific models like BERTje
(Vries et al., 2019) and the more recent RobBERT series (Delobelle & Remy, 2024)
have been developed. Given the effectiveness of Transformer architectures and the
aim of this research to evaluate fine-tuning strategies for Dutch governmental texts.

2.3 The Low-Resource Challenge in NER

2.3.1 Data Dependency in Supervised NER

Modern, high-performing Named Entity Recognition (NER) systems, particularly
those leveraging supervised deep learning, exhibit a significant weakness: they heavily
rely on the availability of large quantities of high-quality, manually labeled training
data to learn effectively (Jehangir et al., 2023). The performance of these models is
directly correlated with the volume and quality of the annotated examples they are
trained on.

2.3.2 The Annotation Bottleneck: Cost and Effort

The process of creating the necessary large-scale annotated datasets is a major
practical obstacle. Manual annotation is inherently time-consuming and expensive,
representing a significant bottleneck in the development pipeline for NER systems
(MacLean & Cavallucci, 2024). This challenge is particularly acute for specialized
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domains or less-resourced languages where annotator expertise might be scarce or
the annotation guidelines complex (MacLean & Cavallucci, 2024).

2.3.3 Performance Implications of Data Scarcity

When only limited labeled data is available, a situation often termed a "low-resource"
or "few-sample" scenario, the performance of supervised NER models can degrade
substantially (Jehangir et al., 2023). Furthermore, training processes, especially
the fine-tuning of large pre-trained models like BERT, can become unstable and
unreliable under these data-scarce conditions, making it difficult to achieve robust
results (Jehangir et al., 2023; Zhang et al., 2021).

2.4 Large Language Models (LLMs) as a Potential Solution

2.4.1 Overview of LLMs and Capabilities

Recent years have witnessed the rapid development of Large Language Models
(LLMs), such as those based on the Transformer architecture like GPT (Brown et al.,
2020). These models are characterized by their massive scale, typically containing
billions of parameters, and are pre-trained on vast amounts of diverse text data. This
results in a LLM having the ability to perform new tasks with very few examples
provided directly in the input prompt, also known as few-shot or in-context learning
(Brown et al., 2020; Dong et al., 2024). These capabilities suggest LLMs possess a
significant degree of general language understanding.

2.4.2 LLMs for NER

With their significant degree of general language understanding, the direct application
of LLMs for Named Entity Recognition (NER) has become a feasible approach (Kim
et al., 2024). This is typically achieved by prompting the LLM with a task description
for NER, instructing it to identify and categorize entities within a given text. This
direct prompting can be performed in a zero-shot manner, relying on the LLM’s pre-
trained knowledge to understand and execute the NER task without any examples
(W. Wang et al., 2019). Alternatively, and more commonly for improved performance,
this is done using In-Context Learning (ICL), where a few examples (shots) of the
NER task (input text and corresponding labeled entities) are provided within the
prompt itself to guide the model’s output (Brown et al., 2020).

2.4.3 LLM Usage Constraints

Although Large Language Models (LLMs) present intriguing possibilities for Named
Entity Recognition (NER), their direct utilization for tasks like extensive annotation
faces considerable constraints. These constraints manifest both monetarily and
computationally. Indeed, the direct deployment of LLMs for such purposes can
be cost-inefficient and computationally demanding, particularly when resources are
limited Santoso et al. (2024). This is largely because state-of-the-art LLMs often
contain billions of parameters, the processing of which during inference requires
significant computational power.
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2.4.4 Addressing Data Scarcity with LLMs

The generative capabilities of LLMs offer a chance for tackling the data scarcity
problem common in many supervised NLP tasks, including NER (Santoso et al.,
2024). Instead of relying solely on costly manual annotation, LLMs can be employed
to generate synthetic training data (Long et al., 2024). This can involve generating
new text instances that resemble the target domain or using the LLM to automatically
annotate existing unlabeled text (Bogdanov et al., 2024; Kuzman & Ljubešić, 2025).
These data augmentation techniques, aim to expand the available training data at a
lower cost, potentially improving the robustness and performance of models trained
in low-resource settings (Chen et al., 2023; Liu et al., 2022).

2.5 Learning Paradigms and Synthetic Data

2.5.1 Zero-Shot Learning (ZSL)

Zero-Shot Learning (ZSL) is a technique within machine learning first introduced by
Chang et al. Chang et al. (2008). Its primary focus is enabling models to recognise
categories they have not encountered during the training phase (W. Wang et al.,
2019). In standard machine learning a model is trained on a fixed set of classes (e.g.
apples and bananas) and can only assign new inputs to those classes. ZSL aims
to go beyond this by enabling the model to identify novel categories (e.g. oranges)
at test time, even though no examples of these categories were provided during
training. This capability typically relies on auxiliary information (also known as side
or supplementary information) that encodes descriptive properties or attributes for
all classes, including both those observed during training (seen classes) and those
withheld (unseen classes).

In the generation of synthetic data using large language models (LLMs), ZSL plays
a central role by enabling the model to produce labelled examples for categories
without any manually annotated data. LLMs such as GPT-based systems can be
prompted with natural-language instructions and class descriptions to generate realis-
tic examples for unseen entity types or tasks, leveraging their broad world knowledge
to simulate supervision where none exists.

2.5.1.1 Prompt-based ZSL in an LLM.

1. Create class descriptors. For every class—seen or unseen—write a concise
natural-language definition or list of attributes, e.g.

Label: ZEBRA
Definition: A horse-like mammal with black-and-white stripes.

2. Compose the prompt. Insert all class descriptors, add the input to be
classified (or an instruction to “generate an example”), and finish with an
explicit request:
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Task: Which label best matches the following description?
Example: ‘A striped equid grazing on the savannah.”
Answer:

3. Run the LLM (no fine-tuning required). The model aligns the semantics
of the input with the provided descriptors and returns the most compatible
label—or, when asked, generates a synthetic example that satisfies the descriptor
for an unseen class.

2.5.2 K-shot Learning

K-shot learning refers to a spectrum of machine learning scenarios defined by the
number of labeled examples, denoted by ’k’, available per class during the training or
adaptation phase. This encompasses Few-Shot Learning (FSL), which addresses the
challenge of training models to generalize effectively to new tasks using a minimal
number of labeled examples (Y. Wang et al., 2021), often applied in LLMs through
techniques like In-Context Learning (ICL). In-Context Learning (ICL) refers to a
paradigm associated with LLMs where the model adapts to perform a task during
inference without requiring updates to its parameters (Dong et al., 2024) The core
objective in FSL is to enable models to rapidly adapt and make accurate predictions
for novel classes after exposure to minimal task-specific data.

This contrasts sharply with the traditional supervised learning paradigm, often
termed Many-Shot Learning (MSL), which is characterized by the availability of
abundant labeled training data (a large ’K’) for each class (Agarwal et al., 2024).
This data-rich setting allows standard supervised algorithms, including deep neural
networks, to be trained effectively, often achieving high performance, serving as an
upper-bound benchmark for FSL and Zero-Shot Learning (ZSL) research, representing
the potential achievable with ample data (Agarwal et al., 2024). The term MSL is
primarily used to distinguish this conventional approach from data-efficient methods
such as FSL and ZSL, which are designed for scenarios with significantly limited
or no labeled data per class (W. Wang et al., 2019; Y. Wang et al., 2021). While
effective, the many-shot approach faces practical limitations due to the significant
cost and effort required for large-scale data collection and annotation, particularly
in domains with numerous classes, rare instances, or evolving categories. K-shot
learning, therefore, provides a framework for understanding model performance
and development across varying degrees of data availability, from scenarios with
significantly limited data to those with extensive datasets.

2.6 Related Work: Low-Resource NER and Synthetic Data

2.6.1 Synthetic Transcripts in Slovakian

Lajčinová et al. (2024) focus on developing a Named Entity Recognition (NER)
system for extracting address information from speech-to-text transcriptions. Their
approach of generating synthetic data using OpenAI’s GPT-3.5-turbo API due to
limited real-world data shares a similar objective with this thesis. Nevertheless, a
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key difference lies in their synthetic data creation process. While Lajčinová et al.
(2024) also utilizes raw unlabeled data to create sythetic human-like transcripted
texts. Their research focussed first of all only on the slovakian language, but also on
locations instead of organizations.

2.6.2 Synthetic Healthcare Data

A study done by Šuvalov et al. (2025) focuses on developing NER models for low-
resource languages, specifically Estonian, tackling the challenge of limited annotated
health care data. The researchers concentrated on leveraging Large Language Models
(LLMs) and synthetic data to create effective NER models while preserving patient
privacy. Their method involved a three-step pipeline. First, they generated synthetic
Estonian electronic health records using a locally trained GPT-2 model. Second,
LLMs like GPT-3.5-Turbo and GPT-4 annotated these synthetic texts to identify
entities such as drugs and procedures. Finally, this annotated synthetic data was used
to fine-tune an XLM-RoBERTa NER model, which was then tested on real-world
Estonian medical texts. This approach avoids using sensitive patient data directly
for training.

The research done by Šuvalov et al. (2025) addresses the challenge of limited annotated
data. However, it significantly diverges by focusing on the healthcare domain, which
presents different challenges than the governmental domain due to its high privacy
sensitivity. Another key difference lies in their methodology. Where Šuvalov et
al. (2025) leverages an two-stage approach involving the training of a local Large
Language Model (LLM) followed by data labeling using a separate GPT model. Due
to the privacy sensitive data, which healthcare issues, the need for local training was
neccesary to guarantee the privacy of patients.

2.6.3 Synthetic Data for Classification

Harsha et al., 2025 investigate the use of large language models to generate synthetic
data for text classification tasks, comparing zero-shot and few-shot approaches.
Their results show that synthetic data is effective for objective tasks but less so for
subjective ones, where model performance drops significantly. Few-shot prompting
improves both quality and diversity of the generated data. These insights are relevant
to our work, as we apply zero- and few-shot LLM prompting to generate fine-grained
NER data. While NER is generally less subjective, certain entity boundaries can
introduce ambiguity. Their findings highlight the importance of guided prompting
and careful example selection when using synthetic data to train models in difficult
language settings.

2.6.4 Positioning the Current Research

While all three of the aforementioned studies address low-resource NER, each tackles
the problem in a domain-specific way, shaped by its own constraints. In contrast,
governmental documents such as the Minutes of the Staten-Generaal pose a different
scenario: there is no shortage of source material, and the data are publicly available
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under the WOO, so privacy concerns are minimal. But no availablity of labeled
data combined with the high costs of a custom GPT turn parliamentary NER into
a low-resource challenge. This work therefore asks whether cheaper strategies such
as zero-/few-shot prompting and synthetic-data generation can deliver high-quality
NER without the heavy price tag of full-scale model pre-training.

2.7 Synthesis and Identified Research Gap
Named Entity Recognition (NER) is vital for information extraction (Jehangir et al.,
2023; Yadav & Bethard, 2018), but its effectiveness hinges on large labeled datasets,
often scarce and costly, especially in specialized domains (MacLean & Cavallucci,
2024). This data scarcity limits model performance in low-resource settings (Jehangir
et al., 2023; Zhang et al., 2021). Large Language Models (LLMs) offer a potential
solution through synthetic data generation via In-Context Learning (ICL) (Brown
et al., 2020; Dong et al., 2024; Long et al., 2024). While LLM-generated data shows
promise for low-resource NER (Harsha et al., 2025; Lajčinová et al., 2024; Šuvalov
et al., 2025), its effectiveness for fine-tuning Dutch BERT models for domain-specific
NER on Dutch governmental documents remains underexplored. Therefore, this
thesis investigates the effectiveness of tailored LLM-generated synthetic data for this
specific task by generating and evaluating a relevant dataset.
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3 Method

This section details the methodology used to answer the research questions posed
in Section 1. The overall approach involves creating a gold standard dataset from
Dutch governmental texts, generating synthetic data using a Large Language Model
(LLM) with varying prompting strategies, analyzing the quality of this synthetic
data, and finally evaluating the performance of a Dutch BERT model fine-tuned on
generated data.

3.1 Minutes Database

3.1.1 Database Components

The Staten Generaal minutes database is structured with distinct components to
ensure consistency across various document types (as detailed in Table 1). The
dataset is directly downloaded from the WooGLe drive with permission and only
consists of documents in the 2b category.

Document Type Explanation
Presentie en
Opening

These documents list the parliamentarians
present at the debate and officially mark the
opening of the minutes.

Sluiting This marks the official close of the minutes and
typically only includes the time of closure.

Mededeling These are special announcements before the start
of a minute.

Stemming This announcement consists of the motion to
be voted on and announcing the outcome of the
vote.

Lijst van in-
gekomen
stukken

This is a list detailing all the documents that
have been received.

Miscellaneous This category encompasses all other documents,
consisting of transcribed minutes on various top-
ics.

Table 1: Document types in minutes by the Staten Generaal

3.2 Gold Standard Dataset
A high-quality, manually annotated dataset is essential both for providing examples to
the LLM (for K-shot generation) and for evaluating the final NER model performance.
This dataset serves as the ’gold standard’.

11



3.2.1 Dataset Preparation

The following steps were employed to prepare a candidate dataset for annotation:

1. Focus on a Relevant Time Period:

• The dataset was initially filtered to include documents from 2022 onwards.
This timeframe captures the coalitions of Rutte IV and Schoof I. The
selection of these years was done for the reason it captures a big shift in
the dutch political landscape and therefore could enhance diversity of the
samples.

2. Exclude Non-Substantive Document Types:

• As seen in Figure 1 the notion of what a document must consists of
has changed in the last 30 years. Where gradually more documents
meant exponentially more pages. Table 1 shows the distinction between
the document types where only miscellaneous contains actual minutes.
Therefor documents consisting of fewer than 5 pages were excluded from
the dataset. The split can be seen in figure 3a

(a) Split in pages with ≤ 4 or ≥ 5 pages (b) Distribution of document length

Figure 3: Document length characteristics

3. Random Page Selection:

• From the remaining pool of pages belonging to these content-rich docu-
ments (2022 onwards, >= 5 pages), a random sample of 75 pages was
selected from the remaining 34.735 pages.

4. Pre-process Selected Page Text:

• The body text of these 75 selected pages was pre-processed. This involved
removing potentially the first and last sentences from the body text of
each sampled page to potentially eliminate less relevant introductory/con-
cluding remarks or incomplete sentences.
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5. Preparation of Sample for Annotation:

• The document ID and the cleaned body text of these 75 sampled pages
were then prepared and exported.

This structured approach aims to create a dataset that is both manageable and rich
in relevant content for NER research.

3.2.2 Manual Annotation Process

3.2.2.1 Label Set Definition

The annotation process will adhere to a strict protocol defined in Appendix A.
This protocol specifies the entity types (See also Table 2) to be annotated, being
domain-specific organizational labels crucial to the OpenGov context. Defining these
specialized labels accurately is a key aspect of adapting NER to this domain.

Label Explanation Rationale Examples
PAR Political Party Essential for tracking political affilia-

tions, electoral dynamics, and partisan
contributions to policy or public narra-
tives.

"PvdA", "Partij van de
Arbeid", "PVV", "VVD"

BUS Business Allows for analysis of economic actors,
corporate influence, market trends,
and their interactions with other soci-
etal sectors.

"Shell", "ASML", "ING",
"Philips"

NGO Non-
Governmental
& Activist

Vital for identifying civil society actors
(advocacy, activist, advisory groups)
and their role in shaping public opin-
ion or policy.

"Extinction Rebellion",
"Adviesraad Interna-
tionale Vraagstukken"

GEN Governmental
Entity

Fundamental for analyzing state ac-
tions, public administration, policy
implementation, and official communi-
cations.

"Ministerie van Binnen-
landse Zaken", "Tweede
Kamer", "Politie"

INT International
Organization

Necessary for recognizing supranation-
al/intergovernmental bodies, crucial
for research on international relations
or global governance.

"EU", "Europese Unie",
"Europees Hof voor de
Rechten van de Mens"

EDR Education /
Research Insti-
tution

Important for identifying sources of
academic knowledge, expert opinion,
and their influence on policy and soci-
etal understanding.

"Universiteit van Amster-
dam", "UvA", "WODC"

Table 2: Label Types for Annotation with Rationale

The specific labels were chosen to provide a functional and granular classification of
organizational entities. Collectively, this label set enables a more nuanced and precise
analysis, allowing for a clearer understanding of the distinct functions, influences,
and interactions of these varied organizational types within the analyzed texts.
Distinctions between NGO’s and corporate organizations could allow for a more
in-depth analysis about their influence in the politcal landscape.
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3.2.2.2 Annotation Tool and Procedure

Annotation will be performed using Label Studio, an open-source data labeling tool
suitable for NER tasks (Tkachenko et al., 2020-2025). The use of Label Studio
facilitated this research with the ability to create custom labels as defined in the
appendix A.

3.2.2.3 Inter Annotator Agreement and Cohen’s Kappa

To ensure the quality of the process of annotation, the tasks will be performed by
atleast 2 annotators following the detailed guidelines in the protocol. To ensure
consistency Cohen’s Kappa between annotators will be performed. This method takes
into account the agreement occurring by chance, rather than the simpler percentage
agreement. Thereby creating a more robust assesment. To highlight the possible
differences in-between label categories the κ will be calculated for each label.

The formula of Cohen’s Micro Kappa (κ) is given by:

κmicro = Po − Pe

1 − Pe

Where Po is the observed agreement while Pe is the expected agreement between
annotators. These are denoted as

Po = 1

N

k

∑
i=1

nii, Pe =
k

∑
i=1
(ni+
N
)(n+i

N
)

k is the number of distinct annotation categories, N the total number of annotated
characters, nii the number of characters that both annotators assigned to category i,
ni+ the number of characters Annotator A placed in category i (regardless of An-
notator B), and n+i the number of characters Annotator B placed in category i
(regardless of Annotator A).

The values for κ range from 0 to 1, where κ > 0.8, indicates almost perfect agreement.
This interpretation comes from Cohen (1960). Table 3 indicates how Cohen’s κ will
be calculated after the annotation phase for each label on its own.

Annotator 1 Annotator 2 Agreement
Marked Marked TP
Marked Not Marked FN
Not Marked Marked FP
Not Marked Not Marked TN

Table 3: Examples of calculation of Cohen’s Kappa in annotation
phase.
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A micro κ of 0.726 was obtained with a unweighted macro κ of 0.581 and a weighted
macro κ of 0.642. According to the commonly used Landis–Koch scale the mi-
cro κ indicate solid but not yet outstanding consistency (Landis & Koch, 1977).
The gap to the “very good" (κ > 0.80) suggests that annotators still face domain-
specific challenges. Therefor we looked at the κ for each label on its own (see Table 4).

Label κ Grade
PAR 0.937 ’Excellent’
INT 0.650 ’Good’
GEN 0.590 ’Moderate’
EDR 0.558 ’Moderate’
NGO 0.421 ’Moderate’
BUS 0.329 ’Fair’

Table 4: The κ for each label

The diverging label agreement is largely due to the way organisations are referenced
in running text. Brief mentions, such as “...de bakker...”, may be interpreted either
as a business (BUS) but can also be disregarded and interpreted as a person. A
further complication is limited visibility into an organisation’s institutional context.

3.3 Synthetic Data Generation
This phase focuses on using gpt-4.1 with endpoint -2025-04-14 to generate syn-
thetic data, leveraging the insights from recent work on LLM-driven data generation
(e.g., Long et al. (2024)).

3.3.1 Prompting Strategies

To investigate the impact of context examples on generation quality, two distinct
prompting strategies will be implemented and compared:

• Zero-shot: The LLM will be prompted to generate labeled organizational
entities in a document without being provided with any specific examples from
the domain. The prompt will only contain the task description and the target
label set.

• K-shot: The LLM prompt will include the task description, the target label
set, and K-amount of diverse examples (1, 2, 5, 10, 25 and 50) of randomly
selected sentences from the gold standard dataset.

The sentences used, were sampled from the training set defined in section 3.2.

3.3.2 Prompt Framework

The prompts used for API calls in this research were systematically developed
using the RTF-framework. This framework is one of the state-of-the-art prompting
techniques and consists of the prompt being divided into Role, Task and Format
(See Appendix C).
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3.4 Evaluation of Synthetic Data Quality (Addressing RQ1)
To answer RQ1 regarding the representativeness and quality of the synthetically
generated datasets, a mixed-methods evaluation approach will be employed. This
will compare the synthetic datasets against the gold standard dataset.

3.4.1 Quantitative Analysis

This stage quantitatively will result in metrics about synthetic datasets against the
gold standard to assess how well each prompting strategy replicates authentic data
characteristics.

3.4.1.1 Cosine Similarity

The first evaluation metric is cosine similarity, which quantifies how closely the vector
representation of a generated sentence aligns with that of its reference in semantic
space. Let u,v ∈ Rd be the d-dimensional sentence embeddings obtained from a
Sentence-BERT model all-MiniLM-L6-v2. As this model delivers reliable semantic
estimates while keeping compute costs low as it contains only ≈ 22M parameters and
yields 384-dimensional embeddings.2 Cosine similarity is defined as

cos_sim(u,v) = u ⋅ v
∥u∥2 ∥v∥2 ,

yielding a score in the range [−1, 1], where 1 indicates identical direction (maximum
semantic overlap) and 0 indicates no shared direction. For each k-shot setting
we compute the similarity for every one of the 300 sentence pairs and report the
macro-average,

cos_simmacro =
1

N

N

∑
i=1

cos_sim(ui,vi), N = 300,

so that every sentence contributes equally to the final score.

3.4.1.2 Bilingual Evaluation Understudy (BLEU)

BLEU is a metric that measures how close a candidate text (usually a machine-
generated translation) is to one or more reference texts produced by humans. Higher
BLEU implies the candidate shares more wording and phrasing with high-quality
human translations, so it often correlates with human judgments of adequacy and
fluency. The BLEU scores are computed with the nltk module sentence_bleu. All
reference sentences are first tokenised. For a given k-shot setting each generated
sentence is then evaluated against the full set of tokenised references. We obtain
a sentence-level BLEU value for each sentence and report average over the 300
sentences, because this should yield a stable estimate on the small corpus.

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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BLEUmacro(k) = 1

N

N

∑
i=1

BLEU(hyp(k)i , {ref1, . . . , ref300}), N = 300.

Here hyp(k)i is the generated sentence, where i is the i-th sentence generated by the
model under the k-shot prompt. hyp(k)i is the reference sentence from the real corpus.
Smoothing is applied in the process of sentence-level calculation to prevent low scores
for valid sentences lacking higher-order n-gram matches.

3.4.1.3 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE is also a metrics for comparing a system-generated text with one or more
human reference summaries. Unlike BLEU, which is precision-oriented, ROUGE
emphasizes how much of the content in the reference is recovered by the candidate,
so its scores are recall-driven. ROUGE-1, unigram recall, shows coverage of pieces of
information that are often expressed by single content words. ROUGE-2, bigram
recall, hints at fluency and ROUGE-L captures longer phrasal overlap. We compute
ROUGE-1, ROUGE-2 and ROUGE-L with the public rouge_scorer library. For
every generated sentence we compare it against all 300 reference sentences and keep
the highest recall-score, those best scores are then averaged over the 300 sentences
to give the ROUGE scores.

ROUGEℓ(k) = 1

N

N

∑
i=1

max
j≤N

ROUGEF
ℓ (refj, hyp(k)i ), ℓ ∈ {1,2, L}, N = 300.

3.4.1.4 BERTscore F-1

Token-level semantic overlap is measured with BERTScore using the multilingual
xlm-roberta-large model as backbone. This model ensured multi linguality and
included dutch and showed State-of-the-art correlation with human judgements. For
a synthetic sentence and a reference we embed every token and build the cosine-
similarity matrix. Precision, recall, and the harmonic mean are:

P = 1

m

m

∑
i=1

max
j

Sij, R = 1

n

n

∑
j=1

max
i

Sij, F1 = 2PR

P +R.

We report the mean F1 over all 300 sentence pairs for each k-shot prompt, as produced
by the official BERTscore library. The symmetry in precision and recall arises due to
the use of cosine similarity in both directions and the balanced token matching in
comparable sentences.

3.4.1.5 Perplexity

Fluency is quantified with the causal Dutch language model GroNLP/gpt2-small-dutch
(de Vries & Nissim, 2020). We adopt this model because it is one of the few causal
Transformers trained natively on large-scale Dutch corpora, ensuring that its probabil-
ities reflect Dutch syntax. Another reason why this model was used is its lightweight
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(≈117M parameters), so it can score hundreds of sentences on a single GPU or even
a CPU workstation without batching issues. And at last it is publicly released on
Hugging Face, which makes our perplexity scores easy to reproduce and compare
in future work. Given a generated sentence of length T tokens, the language model
assigns a log-likelihood log p(wt ∣ w<t) to each token wt. Perplexity is defined as

PPL = exp(− 1
T

T

∑
t=1

log p(wt ∣ w<t)),

so lower values indicate more predictable (and typically more fluent) text. Following
the evaluate implementation we compute the perplexity for every sentence and
macro-average over the 300 sentences.

3.4.1.6 Linguistic Feature comparison

To assess the structural and stylistic quality of the generated sentences, we compared
basic linguistic features with real sentences. Specifically, we computed sentence length
(in characters and tokens) and readability using the Flesch Reading Ease metric.
Sentence length was measured using string and token counts, while readability scores
were obtained using the textstat Python package. These features were aggregated
per k-shot setting and compared against real data through descriptive statistics,
histograms, and boxplots. This analysis helps to identify whether synthetic outputs
approximate the complexity and fluency of authentic parliamentary text.

3.4.2 Qualitative Analysis

This stage involves a systematic qualitative error analysis on samples from each syn-
thetic dataset (zero- and few-shot outputs) to understand how prompting strategies
impact the quality of generated annotations and text. Insights will complement
quantative analysis, explaining why certain strategies produce more representative
and accurate synthetic data.

3.4.2.1 t-distributed Stochastic Neighbor Embedding (t-SNE)

To visualize the semantic distribution of real and generated sentences, we applied
t-SNE to sentence embeddings obtained from the pre-trained all-MiniLM-L6-v2
SentenceTransformer. Embeddings were converted and standardized using Standard-
Scaler to ensure uniform scaling. We set the t-SNE perplexity to 30 and fixed the
random seed to 42 to ensure reproducibility. This setup ensures structure in the 2D
projection while maintaining consistent embedding distances across runs.

3.5 Model Fine-tuning and Evaluation (Addressing RQ2)
To address RQ2 a Dutch pre-trained BERT model will be fine-tuned using the
synthetically generated data, and its performance will be compared against a baseline.

18



3.5.1 Fine-tuning Process

Based on the findings from Section 3.4, the most promising k-shot strategy will
be utilized to generate a synthetic dataset furter explained in 3.5.2. The Dutch
RobBERT-v2-dutch-ner model will be fine-tuned on this synthetic dataset for the
NER task. This model is the State-of-the-art model for Dutch NLP tasks (Delobelle
& Remy, 2024). The fine-tuning process was run on Google Colab L4 GPU. The
training parameters are defined in Appendix D.

3.5.2 Synthetic Dataset

The synthetic dataset will be generated with the most promising k-shot strategy.
The prompt used can be found in Appendix C. The prompt was looped to generate
1.000 sentences. This is the consensus for the minimal amount of fine-tune material.3
The distribution of the enities in the synthetic data can be seen in Table 5.

Entity type Count
GEN 383
INT 200
PAR 192
NGO 169
BUS 125
EDR 120
Total 1189

Table 5: Distribution of entity types (Total entities = 1189)

3.5.3 Baseline Model

A baseline will be established for comparison by using the pre-trained Dutch
RobBERT-v2-dutch-ner model (Delobelle & Remy, 2024). The task will be per-
formed without any fine-tuning on the target task or domain data. Because there is
no such FgNER model for these type of documents, we roll up the fine-grained labels
to the ORG label and only evaluate the Dutch model’s performance on recognizing
ORG entities.

3.5.4 Performance Evaluation

Both WorgBERGT and a baseline robbert-v2-dutch-base model are evaluated on
the held-out, manually-annotated gold-standard test set whose annotations were
validated with the IAA procedure (see Paragraph 3.2.2.3).
The baseline RobBERT-v2-dutch-ner has no notion of the fine-grained organisational
tags introduced in FgNER. To ensure a fair comparison we roll up every organisa-
tional subtype to the generic label ORG and evaluate RobBERT-v2-dutch-ner on this

3https://discuss.huggingface.co/t/thoughts-on-quantity-of-training-data-for-fine-tuning/
14886
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single class. Non-organisational entities are ignored for the metrics in this experiment.

For RobBERT-v2-dutch-ner every predicted span and gold span with label ORG we
compute the span-level Jaccard overlap. For WorgBERT the same is done but with
all the fine-grained labels.

J(p, g) = ∣p ∩ g∣∣p ∪ g∣ .

A prediction is counted as a True Positive when J(p, g) ≥ 0.75; otherwise it is a False
Positive. Gold spans that are not matched by any prediction at the 0.75 threshold
are treated as False Negatives.
With the counts of true positives (TP ), false positives (FP ) and false negatives
(FN) we compute precision, recall and F1:

P = TP

TP + FP
, R = TP

TP + FN
, F1 = 2PR

P +R.

The F1 was chosen as the main metric as it finds the balance between precision and
recall. This is important because we want to find as many correctly predicted labels
but also minimalize the amount of wrongly predicted labels.

20



4 Results

This chapter presents the results of the evaluation of the synthetically generated
corpus’. Followed by the results of the evaluation of a fine-tuned RobBERT model.
The findings are structered to systematically answer the research questions:

RQ1: How well do Large Language Model perform in generating a representa-
tive synthetic dataset of NER compatible labeled Dutch governmental
texts?

RQ2: How does the performance of a Dutch BERT model fine-tuned on syn-
thetically generated dataset compare to that of a pre-trained (non-fine-
tuned) Dutch BERT model?

4.1 Quantitative Evaluation for K-shot

(a) SBERT precision/recall and
BERTScore.

(b) BLEU and ROUGE metrics.

(c) Negative perplexity across k-shot
prompts.

Figure 4: Summary of evaluation curves for the summarization
model as the number of k-shot examples increases.
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The evaluation results reveal several trends across different k-shot settings: First,
SBERT similarity scores (precision and recall) improve as k increases, with the
largest jump between 0-shot and 1-shot. After 25-shot, the gains level off.

Second, token-level overlap metrics (BLEU and ROUGE) also increase with more
examples. The dip around the 5- and 10-shot may indicate that the generated
sentences overfit the limited prompts, relying on repetitive phrasing that lowers their
overlap with the reference set. The best scores are achieved with the 50-shot prompt,
though even a single example (1-shot) already leads to strong improvements in lexical
similarity.

Lastly, fluency, measured by perplexity (PPL), increases as k grows. The higher PPL
observed in the 25- and 50-shot settings may indicate that the model is adopting
more formal or domain-specific language rather than becoming less fluent. This shift
could be beneficial if it aligns the output style more closely with the target domain.
The drop from 25- to 50-shot indicates that the model is overflowed with examples,
making the model output more predictable sentences.

In summary, providing more examples (k) enhances generation quality, with the most
significant gains occurring between 0- and 1-shot. While a larger k boosts semantic
and lexical scores and mitigates the overfitting seen in smaller few-shot settings, it
also increases perplexity. This rise in PPL likely reflects a beneficial shift toward
a more complex, domain-specific style. The optimal choice of k therefore balances
improved accuracy against this increased stylistic complexity, with 25 or 50 examples
proving most effective for mastering the target domain.

4.1.1 Linguistic Feature Comparison

Table 6 presents descriptive statistics for each k-shot subset alongside the real corpus.
On the surface, the figures look similar: every synthetic subset keeps its mean
close to 11–13 words and its median within a two-word band of the mean. A quick
glance might therefore tempt one to conclude that sentence length has been matched
adequately across all data slices.

Figure 5, however, tells a more nuanced story. By plotting the complete distribu-
tions rather than mere point summaries, it shows two patterns.

• Almost all synthetic subsets top out at 21 words (18 words for k = 5 and k = 50).
Whereas the real corpus reaches 66 words. This ceiling effect suggests that
longer, more complex sentences are entirely absent from the generated material.

• As k rises (25- and 50-shot), the mean shifts toward shorter sentences (≈ 10
words), and variance shrinks. In other words, larger prompt sizes appear to
encourage the model to produce more concise sentences.

To conclude the model is fundamentally biased towards generating structurally simple
sentences. This limitation is not only masked by basic statistics but is paradoxically
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k Mean Min Median Max
0 13.47 8 13 21
1 11.24 7 11 21
5 12.21 7 12 18
10 12.09 7 12 21
25 10.74 2 10 21
50 10.90 2 11 18
real_ 12.07 1 9 66

Table 6: Sentence length statistics
(in words) per k-shot.

Figure 5: Sentence length
distribution across k-shot.

worsened by providing more examples (k), which results in even shorter, more uniform
sentences.

4.1.1.1 Flesh readability

As Figure 6 illustrates, there is a sharp contrast in the variability of readability scores.
The authentic sentences from the real corpus show a wide distribution, signifying a
rich mix of simple and complex sentence structures. On the contrary, the generated
sentences consistently form much tighter clusters, indicating they occupy a narrower
and more predictable "comfort zone" of readability.

Figure 6: Boxplot of Flesch readability scores for real and k-shot
generated sentences.

A likely reason is that the language model never sees the full complexity of par-
liamentary style: its output is shaped only by the prompt and the limited set of
k-shot examples we give it. If those examples don’t cover the extremes of simple
and intricate wording, the model will naturally stay within the safer middle ground.
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This results in the generated sentences being less complex than the golden standard.
Also this makes the generated text feels more homogenous and fails to capture the
characteristic fluctuations in complexity found in the authentic corpus.

4.2 Qualitative Evaluation for K-shot

4.2.1 t-SNE

The t-SNE plots (Figure 7) show the embedding distributions of real versus synthetic
sentences across different k-shot strategies. With increasing k, synthetic data pro-
gressively approximates the semantic structure of real parliamentary sentences. The
25-shot and 50-shot generations show the highest overlap. These observations confirm
that few-shot prompting steadily narrows the distributional gap between synthetic
and real sentences, with the most pronounced improvements occurring within the first
25 demonstrations. Beyond that point additional shots yield diminishing semantic
returns, suggesting that 25-shot constitutes a practical sweet-spot for this dataset
and model.

(a) 0-shot (b) 1-shot (c) 5-shot

(d) 10-shot (e) 25-shot (f) 50-shot

Figure 7: t-SNE visualization of sentence embeddings for real and
synthetic data across different k-shot settings
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The experiments show that increasing the number of real examples in the k-shot
fine-tuning progressively aligns the synthetic output with authentic minutes of the
Staten-Generaal. Remarkably, the 25-shot setting already yields almost the same
qualitative similarity as the 50-shot setting, yet with a substantially lower perplexity,
indicating a better imitation of formal parliamentary language and stronger lexical
overlap.

4.3 K-shot findings
The finding of this part of the research is a disconnect between the LLMs ability
to replicate semantic content and its capacity for structural authenticity. While
increasing the number of k effectively aligns the generated text with the target
domain’s vocabulary and topics (as confirmed by metrics like BLEU, SBERT, and
t-SNE visualizations), this success masks failure. The LLM imposes a strong bias for
simplicity, consistently failing to produce the long, complex, and stylistically varied
sentences of the authentic corpus. Paradoxically, providing more examples can even
worsen this structural deficit, leading to shorter and more uniform sentences.
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4.4 Evaluating WorgBERT

4.4.1 Gold Standard Test Set (Fine-Grained)

After fine-tuning RobBERT-v2-dutch-base, we evaluated WorgBERT on both the
imbalanced gold standard test set and performed a sanity check on the synthetic test
set. For the first, we also ran the unmodified RobBERT-v2-dutch-base as a direct
baseline.

Class Precision Recall F1-score Support
BUS 0.000 0.000 0.000 13
EDR 0.000 0.000 0.000 4
GEN 0.081 0.053 0.064 152
INT 0.500 0.067 0.118 15
NGO 0.000 0.000 0.000 12
PAR 0.882 0.375 0.526 120
micro avg 0.293 0.171 0.216 316
macro avg 0.244 0.082 0.118 316
weighted avg 0.398 0.171 0.236 316

Table 7: Classification Report per Entity on Gold standard.

On the gold-standard corpus WorgBERT attains a micro-precision of 0.168, a micro-
recall of 0.206, and a micro-F1 of 0.185; the weighted F1 rises to 0.262 owing to class
imbalance. Per-label scores show that PAR reaches an F1 of 0.606, INT 0.238, GEN
0.064, while BUS, NGO, and EDR remain at 0.

The sharp drop from synthetic set performance to these gold scores signals that
WorgBERT overfits the balanced training distribution and struggles with the skewed,
noisy reality of parliamentary text. Almost all correct detections cluster in the
high-frequency PAR class, whereas minority labels are rarely identified, and even
the high-frequency GEN proves difficult. Class imbalance and domain shift, are now
the principal bottlenecks, indicating that targeted augmentation, re-weighting, or
curriculum learning will be required to recover recall for low-frequency organisation
types.

4.4.2 Synthetic Test Set (Sanity Check)

WorgBERT achieves an overall accuracy of 0.80 and a weighted F1 of 0.81 on the
balanced synthetic corpus (Table 8). Because class priors are uniform, the macro F1

remains comparable at 0.82, indicating that every organisational subtype is handled
reasonably well.

Best performance is obtained by BUS and PAR, with respectively F1 = 0.955 and
F1 = 0.919. In contrast, GEN registers the lowest F1 = 0.711, highlighting a little
weakness in recognising governmental entities.
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Class Precision Recall F1-score Support
BUS 0.840 0.840 0.840 25
EDR 0.667 0.889 0.762 18
GEN 0.711 0.711 0.711 83
INT 0.955 0.933 0.944 45
NGO 0.852 0.622 0.719 37
PAR 0.919 0.971 0.944 35
micro avg 0.812 0.802 0.807 243
macro avg 0.824 0.828 0.820 243
weighted avg 0.817 0.802 0.806 243

Table 8: Classification Report per Entity on Synthetic Test-Set.

4.4.3 Baseline RobBERT (Coarse-Grained)

The Dutch RobBERT-v2-dutch-base model is evaluated on the same corpus after
collapsing all six sub-types to the single ORG tag (Table 9). It returns an precision
of 0.726, recall of 0.485 and a F1 of 0.581. The F1 score is roughly double that of
WorgBERT in the fine-grained setting.

Class Precision Recall F1-score Support
ORG 0.726 0.485 0.581 262

Table 9: Classification report RobBERT on ORG entity

What does have to taken into account, is the drop in support in the gold standard
data. Certain labeled entities wich were next to eachother have been combined in
the process. Still the troubles of correctly labeling all organisational entities is a
difficult task, even for RobBERT.
It is important to note the sharp drop in support within the gold-standard data:
adjacent labelled entities were often merged, reducing the number of training signals
for rare organisational types. Still, one might expect RobBERT, to handle such
entities more gracefully. In practice, however, the model still misses or misclassifies
a surprising share of organisational mentions, underscoring how challenging NER
remains in this field, despite the use of a powerful language model.

4.5 Error Analysis of WorgBERT

4.5.1 Global picture.

Table 10 shows that only 35 spans are recognised correctly, while almost a half of the
model’s outputs are false positive and roughly the same number of gold mentions
are missed (FN).
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Status # Spans
TPexact 32
TPpartial 3
FP 298
FN 281

Table 10: Span–level outcomes for the gold standard set (614 gold
or predicted spans in total).

4.5.2 Qualitative error categories

A manual inspection of the errors reveals three dominant types:

• Boundary errors (TPpartial, 3 cases). The model captures the head of a
multi-word entity but omits obligatory modifiers:

real span: "Kamercommissie voor Justitie en Veiligheid"
predicted span: "voor Justitie en Veiligheid"

Such near-misses score high Jaccard overlap. And are therefore categorized as
partial TP.

• False single-token predictions (FP, 298 cases). About half of all errors fall
in this category. Typical patterns are:

– Bare surnames or common nouns: "Van", "Bruins" tagged as GEN.

– Random organisation-looking strings, e.g. “NIS2-” as BUS, or personal
names such as “Rajkowski” tagged as NGO.

These indicate that the span-level context window learned during fine-tuning
is insufficient to suppress out-of-context entity triggers.

• Completely missed entities (FN, 281 cases). The model frequently misses
established abbreviations (“SGP”) or long institutional names (“Wetenschap-
pelijke Raad voor het Regeringsbeleid”). In the latter case the sentence often
contains multiple capitalised tokens, causing the model to abstain entirely.
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4.6 Key Findings
• Few-shot quality rises predictably. Both semantic similarity (SBERT) and

lexical overlap (BLEU, ROUGE) leap from 0- to 1-shot and continue to climb
up to 25-shot, after which further gains flatten out. The t-SNE plots portray
the same image, where through 0- to 25-shot the overlap increases. The 50-shot
prompt attains the highest overlap scores, but its lower perplexity reveals
a shift toward more formal predictable language rather than fluency. The
consideration for 25- or 50-shot comes down to the choice for how predictable
the sentences need to be.

• Averages mask missing extremes. Sentence-length and Flesch analyses show
that synthetic data systematically leaves out very long or very easy/complex
sentences, even when headline metrics look strong, highlighting the need to
match the full distribution of real language, not just its center. The Flesch
distributions show that the LLM generated sentences follow more of a safe zone
in terms of difficulty.

• Balanced data enables fine-grained learning. On the uniformly dis-
tributed synthetic test set, WorgBERT reaches macro F1 of 0.82, confirming
that the model can separate all six organisational sub-types when each receives
adequate representation.

• Class imbalance is a big obstacle in practice. When evaluated on
the imbalanced gold corpus, WorgBERT’s performance collapses to macro
F1 = 0.118 (micro F1 = 0.216) where three minority labels are never predicted
and almost half of all predictions are false single-token predicitions. When
comparing WorgBERT results to the earlier mentioned gold standard Cohen k
scores (Table 4), a similar trend can be seen. Although all sub-types have a
overlap, PAR is categorized with the "Excellent" mark. This is followed by INT,
which is also the case in the results of WorgBERT on the gold standard data set.

• Comparing to RobBERT. Collapsing every sub-type to a single ORG tag
and using the off-the-shelf RobBERT-v2 shows effectiveness with F1 = 0.58, but
still misses more than 40 % of organisational mentions—showing that even
coarse-grained NER remains challenging in parliamentary text.

• High-level observation. Despite the apparent quality of the synthetic corpus,
a model fine-tuned on it still struggles on real parliamentary text—and even
an off-the-shelf transformer cannot perform as expected. Fine-grained NER in
this domain therefore remains stubbornly difficult.
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5 Discussion

The results confirm that few-shot data generation paired with transformer fine-tuning
could push Dutch fine-grained NER far beyond a coarse ORG baseline, yet several
limitations remain. Increasing the number of k-shot demonstrations directly improves
an LLM’s ability to mimic the semantics and style of authentic parliamentary text:
SBERT, BLEU, and ROUGE leap from 0- to 1-shot, climb steadily to 25-shot,
and then plateau; t-SNE plots show the same convergence of synthetic toward real
embeddings. A 25-shot prompt already captures most of the attainable overlap, while
50-shot offers only marginal gains and begins to lower perplexity through repetition.
However, the generation pipeline never produces the long (up to 66-word) or very
easy/complex sentences found in the gold corpus, and Flesch scores cluster in a
narrow “comfort zone.”

When fine-tuned on the balanced data, WorgBERT attains macro F1 = 0.82 on the
synthetic test set yet collapses to 0.118 on the imbalanced gold set, missing every
minority label. Even the general-purpose RobBERT-v2, evaluated after collapsing all
sub-types, recalls only 48 % of organisational mentions (F1 = 0.58).

5.1 Limitations and Future Work

5.1.1 Model Transparency and Potential Bias

It remains unclear whether models such as ChatGPT were trained on publicly
available Woo (Open Government) documents. This uncertainty raises concerns
about potential data leakage or memorisation, particularly for verbatim outputs.
Although sampling and filtering strategies were applied, future work should explicitly
audit the generated text for originality.

5.1.2 Input Context and Sentence Structure

The present study used isolated sentences for both generation and fine-tuning.
Longer parliamentary segments or full debates could provide richer context and
improve model performance. Future research should therefore explore multi-sentence
generation or dialogue-level modelling for finer-grained NER. Note that even minor
changes in prompt format or wording can substantially affect the output.

5.1.3 Baseline Alternatives and Trivial Lookup

Frequently occurring entities—such as political parties or ministries—may be identi-
fiable with simpler methods (e.g. keyword search or regular expressions). The true
value of fine-grained NER lies in its robustness across varied and ambiguous contexts,
which must be emphasised when comparing against rule-based alternatives.

5.1.4 Class Imbalance and Additional Training

The performance drop on the gold corpus shows that rare organisational types
still dominate the errors. Future work should focus on targeted augmentation or
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curriculum schedules to ensure that these classes receive sufficient training signal.
Our experiments suggest that once coverage improves, fine-grained NER becomes
markedly more viable.

In summary, this work demonstrates the feasibility of using LLMs for controlled data
generation in Dutch governmental NER tasks. It also lays the groundwork for future
research aimed at evaluating generalisation over time, understanding model bias,
and leveraging richer textual contexts.

6 Conclusion

This thesis explored the use of large language models (LLMs) for generating high-
quality synthetic data to fine-tune a Dutch BERT-based model (WorgBERT) for
fine-grained named entity recognition (FgNER) on minutes by the Staten-Generaal.
The results demonstrated that increasing the number of examples in few-shot prompt-
ing improved both semantic and lexical similarity to real-world data. Among the
evaluated strategies, 50-shot prompting yielded the best overall metrics across SBERT
similarity, ROUGE, BLEU, and second best at BERTScore.

The fine-tuned WorgBERT model achieved strong performance on synthetic test
data, but its performance diminishes on the gold standard set. When compared to
the general-purpose RobBERT-v2-dutch-ner, WorgBERT provided more specialized
predictions for organizational entities. These findings suggest that synthetic data
generation via prompting could meaningfully contribute to domain adaptation in
low-resource or evolving public sector domains. But still need a lot of tweaking in
this domain to become viable.
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A Annotation Protocol

This protocol outlines the annotation guidelines for identifying and labeling specific
entities and events within Minutes by the Staten Generaal text. This appendix will
include all necessary information to replicate the annotation process. Consistency
across annotations is necessary for the success of this project.

A.1 Objective
The primary goal of this annotation task is to identify and label specific types of
named entities within governmental documents (such as parliamentary debates).
This will enable research into the interactions and mentions of various organizational
actors within these texts.

A.2 Entity Labels
Annotate text spans corresponding to the following entity types. Use the longest
possible span that refers to the specific entity. Exclude titles like “Minister”, “De
heer”, “Mevrouw” unless they are part of the official organization name.

A.2.1 GEN (Government Entity)

• Definition: National, regional, or local government bodies, agencies, law
enforcement and legislatures.

• Examples: Ministerie van Binnenlandse Zaken, Tweede Kamer, Politie, Open-
baar Ministerie, OM, driehoek, Raad van State, Belastingdienst, NVWA, Buiten-
landse Zaken, Kabinet, Comissie.

• Annotation: Select the full name (e.g., Ministerie van Binnenlandse Zaken,
not just Ministerie). Annotate acronyms if they clearly refer to a government
entity (e.g., OM ).

A.2.2 PAR (Political Party)

• Definition: Formally registered political parties participating in the political
process.

• Examples: VVD, Partij voor de Dieren, PvdD, BBB, CDA, SGP, ChristenUnie,
PVV, NSC, GroenLinks-PvdA, DENK, Lid-Haga.

• Annotation: Select the full party name or its common abbreviation (e.g.,
Partij voor de Dieren, PvdD).

A.2.3 INT (International Organization)

• Definition: International or supra-national governmental organizations (like
the EU, UN agencies, international courts).
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• Examples: Europees Hof voor de Rechten van de Mens, Europese Unie, EU,
G7, UNRWA.

• Annotation: Select the full name or common abbreviation (e.g., Europese
Unie, EU ).

A.2.4 NGO (Non-Governmental)

• Definition: Non-governmental organizations, including activist groups, interest
groups, advisory boards, unions, think tanks, and observatories not primarily
educational or commercial.

• Examples: Extinction Rebellion, Farmers Defence Force, mensenrechtenorgan-
isaties, Politiebond, Syrisch Observatorium voor de Mensenrechten, Adviesraad
Internationale Vraagstukken.

• Annotation: Select the full name of the group. For generic terms like
mensenrechtenorganisaties, annotate if it refers to specific, identifiable (though
unnamed) organizations acting in that capacity within the context.

A.2.5 BUS (Businesses)

• Definition: Commercial enterprises, financial institutions, and industry
groups.

• Examples: Tata Steel, Havenbedrijf Rotterdam, ING, Verzekeraars, Pensioen-
fondsen, Nederlandse bedrijven.

• Annotation: Select the company/institution name. Annotate generic types
like Verzekeraars if they refer to the industry or specific (though unnamed)
actors in context.

A.2.6 EDR (Educational / Research Institution)

• Definition: Educational institutions (like universities) and dedicated research
bodies or think tanks linked to academia or specific organizations.

• Examples: Universiteit van Amsterdam, UvA, WODC, wetenschappelijk bureau
van de VVD.

• Annotation: Select the full name or common abbreviation (e.g., Universiteit
van Amsterdam, UvA).

A.3 Annotation Guidelines
• Span Selection: Select the entire contiguous span of text that constitutes

the name of the entity.

– Example: Annotate Ministerie van Binnenlandse Zaken not just Minis-
terie.
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– Example: Annotate Partij voor de Dieren not just Dieren.

• Exclusions: Do not include preceding titles (like “Minister”, “De heer”,
“Mevrouw”) or trailing possessives (’s) unless they are part of the official
name.

– Example: In “de minister van Justitie”, annotate Justitie as GEN if it
refers to the Ministry. For “Mevrouw Teunissen (PvdD)”, annotate PvdD
as PAR.

• Nested/Overlapping Entities: This protocol focuses on flat NER. Annotate
the most specific, longest span. For example, in wetenschappelijk bureau van
de VVD, annotate the whole phrase as EDR and annotate VVD separately as
PAR.

• Acronyms/Abbreviations: Annotate common acronyms and abbreviations
(e.g., VVD, OM, EU, UvA) with the appropriate label if their meaning is clear
in the context.

• Context is Key: Use the surrounding sentences to understand the role and
type of the entity if the name alone is ambiguous.

• Ambiguity: If you are genuinely unsure about the correct label for a span, or
whether something is an entity at all, use the “Skip” function in Label Studio.
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B Labels Used In Label Studio

B.1 Label Studio

1 <View>
2 <Labels name="label" toName="text">
3 <Label value="PAR" background="#FFA39E"/>
4 <Label value="BUS" background="#D4380D"/>
5 <Label value="GEN" background="#FFC069"/>
6 <Label value="EDR" background="#AD8B00"/>
7 <Label value="NGO" background="#D3F261"/>
8 <Label value="INT" background="#389 E0D"/>
9 </Labels >

10 <Text name="text" value="$text"/>
11 </View>
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C Prompts Used

C.1 Prompting k-shot
Following will be the prompt used to generate syntheticly labeled data for Minutes
of the Staten-Generaal. The procedure will follow a K-Shot mechanism, exploiting
zero and few-shot, which is explained in 2.5.1 and 2.5.2.

1 system_prompt = f"""
2 **Rol**
3 Je bent een taalmodel gespecialiseerd in instructievolging en

tekstannotatie voor parlementaire documenten.
4

5 **Taak**
6 Genereer een formele Nederlandse zin. De zin moet realistisch

voorkomen in parlementaire documenten (net als in de Handelingen
van de Staten -Generaal) en moet ** eindigen met een punt ,

vraagteken of uitroepteken **. Maak de zinnen niet generiek.
Hieronder staat mogelijk een spreekbeurt uit een handeling van
de Staten -Generaal.

7 Gebruik deze als inspiratie voor het genereren van nieuwe
voorbeelden zonder bias naar de voorbeelden.

8

9 ** Format **
10 Zinnen los van elkaar zonder numering.
11

12 ** Voorbeelden **
13 {zinnen_sample_str}
14 """
15

16 user_prompt = """
17 Genereer nu 10 nieuwe synthetische zinnen zoals uitgelegd in de

instructies.
18 """

C.2 Prompting for Synthetic Data

1 system_p = """
2 <SystemPrompt >
3 <Role >
4 Je bent een geavanceerd taalmodel dat gespecialiseerd is in het

genereren van formeel en domeinspecifiek Nederlands ,
vergelijkbaar met de taal die wordt gebruikt in parlementaire
documenten van de Staten -Generaal. Je begrijpt de conventies ,
het register en de syntactische structuren van Kamerdebatten en
o f f i c i l e verslagen.

5 </Role >
6

7 <Task >
8 Genereer nieuwe zinnen die lijken op parlementaire taal , op

basis van aangeleverde voorbeelden. Zorg dat elke zin minimaal
n organisatie -entiteit bevat , gelabeld met een van de

volgende c a t e g o r i e n :
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9 <Labels >
10 <Label code="GEN">Alle instanties die onderdeel zijn van of

direct opereren namens de overheid , waaronder uitvoerende ,
wetgevende en toezichthoudende organen op nationaal en regionaal
niveau.</Label >

11 <Label code="PAR">Politieke partijen </Label >
12 <Label code="INT">Internationale organisaties </Label >
13 <Label code="NGO">Niet -gouvernementele organisaties (zoals

actiegroepen of belangenorganisaties)</Label >
14 <Label code="BUS">Bedrijven of bedrijfsverenigingen </Label >
15 <Label code="EDR">Onderwijsinstellingen en

onderzoeksorganisaties </Label >
16 </Labels >
17 </Task >
18

19 <OutputFormat >
20 Genereer de zinnen in het volgende JSON -formaat:
21

22 [{{
23 "data": {{
24 "text": "HIER_DE_VOLLEDIGE_ZIN"
25 }},
26 "annotations ": [
27 {{
28 "result ": [
29 {{
30 "value": {{
31 "text": "HIER_DE_ENT_TEXT_VAN_ENTITEIT",
32 "labels ": [
33 "HIER_HET_LABEL_VAN_ENTITEIT"
34 ]
35 }},
36 "from_name ": "label",
37 "to_name ": "text",
38 "type": "labels"
39 }}
40 ]
41 }}
42 ]
43 }}]
44 </OutputFormat >
45

46 <Examples >
47 <Description >Voorbeeldzinnen uit Staten -Generaal handelingen :</

Description >
48 <Content >{ output}</Content >
49 </Examples >
50 </SystemPrompt >
51 """.format(output=output)
52

53 user_p = """
54 Genereer 25 formele parlementaire zinnen die qua stijl overeenkomen

met de voorbeeldzinnen in de system prompt. Zorg dat elke zin
minstens n organisatie -entiteit bevat uit de c a t e g o r i e n :
GEN , PAR , INT , NGO , BUS of EDR.

55
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56 Geef het resultaat terug in exact het gespecificeerde JSON -formaat.
57 """
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D Training Parameters WorgBERT

1 # -------------------------------------
2 # 8. Training Arguments
3 # -------------------------------------
4 training_args = TrainingArguments(
5 output_dir="./ WooBERT_results",
6 eval_strategy="epoch",
7 save_strategy="epoch",
8 num_train_epochs =3,
9 per_device_train_batch_size =16,

10 per_device_eval_batch_size =16,
11 learning_rate =2e-5,
12 weight_decay =0.01 ,
13 logging_dir="./logs",
14 push_to_hub=False
15 )
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